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A new method is developed for solving the quantum mechanical problem of scartering of 
a particle with internal structure. The mukichannel scattering problem is formulated as a 
system of nonlinear functional equations for the wave function and reaction matrix. The 
method is successfully tested for the scattering from a nonsphericai potential well and a long- 
range nonsphericai scatterer. The method is also applicable to solving the mu!tidimensional 
Schriidinger equation with a discrete spectrum. As an exampie the known problem of a 
hydrogen atom in a homogeneous magnetic field is analysed. C :991 Academic PXS. ITIC. 

1. INTRODUCTION 

Methods for solving the problem of scattering on a structural scatterer are based 
on the representation of the wave function of a system, +(.X), in a mu~tidimens~o~a~ 
coordinate space X as an expansion over some basis which would reflect specific 
features of the problem and would be rather simple. The procedure is known to be 
as foollows: one should choose orthogonal scattering coordinates, compute matrix 
elements of the Hamiltonian of the problem in a chosen basis, solve a system of 
integrodifferential (or algebraic) equations, single out the scattering matrix from the 
wave function asymptotics, and investigate their dependence on the number of basis 
(or trial) functions. As a rule, this analysis can be made only numerically. 

In this paper, an approach is proposed for solving the muhidimensional scatter- 
ing problem without expanding the wave function over the basis in a traditional 
sense and without calculating matrix elements of the Hamiltonian (a very cumber- 
some problem). For some of variables, Q, from X= (R: !Z> characterizing a scat- 
terer, a difference net Oi is introduced (i = 0, 1, . . . . Iv; the distance between nodes is 
characterized by the step of integration h); those variables are considered discre@ 
and one variable R (the distance from a particle to the centre of mass of a scatterer) 
remains continuous. Then the multidimensional Schrbdinger equation is approxi- 
mated by a system of differential-difference equations for the vector {$iiR) ),” = 
$(R, Sz,). For introducing “difference net” procedure for the internal coordinates 
one can use different approaches (see, for example [I]). The one used here is close 
to the “discrete variable representation” [Z]. At a further ste 
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problem is formulated, following Ref. [3], as a system of nonlinear functional 
equations 

F:)(z) = 0; v = 0, 1, . ..) S< N; m = 1, . . . . 5 (1.1) 

for the vector z = ($j”(R), E, &>, the solution of which for a chosen step h is equiv- 
alent to the determination of the wave function of the scattering problem, @I’)(R), 
and the scattering matrix { tt} corresponding to a given collision energy E = E*. 
Components FL:’ of the operator F define the scattering equations, boundary, and 
normalization conditions for the searched wave function. In this approach, the 
problem of accuracy of the solution of the multidimensional scattering problem 
reduces to the well-elaborated problem of computational mathematics (see, e.g., 
[4]) on convergence of the solution {ICI!“‘(R), tta} obtained in the space X, = 
{R, Qi} to the solution of the initial problem, {$(R. O), &}, in X= {R, Q}, instead 
of the convergence in basis. The approximation used in the paper provides the 
convergence not worse than m 1r4 (here h is less than t? which depends on problem 
peculiarities). 

In Section 2, the multidimensional scattering problem is reduced to a system of 
differential-difference equations for the wave function in space X, and for reaction 
matrix elements. Solution of the latter is expanded in Appendix A in the form of a 
sequence of boundary-value problems for iteration corrections to the wave function 
of the system. In Section 3, the approach is applied to the scattering problem on a 
nonspherical scatterer. Numerical computations by the method for the potentials 

V(R, cos 0) = 0”’ 
RdR,+ycos20 

3 R>R,+ycos28 

a, 
VW, ~0s 0) = 

i- 

RdR, 
cos e R>R, 
R2 ’ 

(1.2) 

(1.3) 

are presented in Section 4, where convergence of the method is also demonstrated 
for h + 0 (N + co). Peculiarities of the approach for computation of states of the 
discrete spectrum of the multidimensional Schrodinger equation are analyzed in 
Section 5 and the known problem of a hydrogen atom in a homogeneous magnetic 
field is solved there. In Section 6, the obtained results and possible applications of 
the method are discussed. 

2. SCATTERING ON A STRUCTURAL SCATTERER 

Let us consider the solution of the Schrbdinger equation in a multidimentional 
space X= (R, 52) 

{fWW)-~) WC Q)=O (2.1) 
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with the Hamiltonian 

H(R,Q)= -&.$+ V(R,Q)+H,(G?). (2.2) 

Where H,(Q) is the Hamiltonian of a scatterer. 

(H,(Q) - c,) cp,,(Qj = 9, (2.3) 

whose wave functions q,(Q) satisfy the normalization conditions 

V(R, Q) is the potential of the interaction between a particle and a scatterer and M 
is the reduced mass of the system “target-particle.” 

Let us introduce the difference net sZi (i = 0, I, . ..) N) in the space Q, 

and consider the system of differential-difference equations, instead of the parfiai 
differential equation (2.1). 

To start with, we denote the set of quantum numbers characterizing system (2.3) 
in the state n by the index c( (cc = 0, 1, . ..) cr ), and the set qp,(Q) of eigenfunctions 
of the Hamiltonaan H,(Q) in nodes 0; will be represented as a square 
(N+ 1) x (N+ 1) matrix ‘pier E cp,(sZi) (i, a = 0, 1, ~..% N). Assuming that rp,(O) is a 
Chebyshev set [53, we introduce the inverse matrix cp,;’ (in this case it exists and 
c:~,4wP;111 = ‘ij. 6 ) and represent the searched wave function as the expansion 

At the net points Qj for the function $(R, Sz) represented by formula (2.0), expres- 
sion (2.5) holds automatically and expressions 

are correct. 
It is easy to calculate the quantities (V(R, Q) vJQ))~, if the operator k’(R, G!) 

contains no differentiation and integration over the variables G?, 
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Otherwise, one can obtain 

using the finite-difference approximation, where matrix A, is determined by the 
type of formulas for numerical differentiation and integration and by properties of 
the basis functions ~~(a). 

If in the asymptotic region R + co the interaction potential has the form 

V(R, Q)=$$$+$, C=const, n>2, (2.9) 

the wave function t+G(R, Q) as R + c(j can be represented as 

where t,,(s) is the reaction matrix of the scattering problem, with S+ 1 open 
channels (E-F, > 0 at CI < S), k, = ,,/~M(E - E,) is the momentum of a channel, and 
C, are normalization constants. Multiplying (2.10) by q,,(R) and integrating the 
equation over Q, one obtains, as R + W, (N + I ) equations 

jJW,R) 4, + a<S 
s IC/"'(R,52)q,,(Q)dSZ= (2.11) 

C,exp{-lkl RI, a>s 

On the other hand, using expansion (2.6) for $(R, 8) and the conditions of 
orthogonality for functions qo,(Q) (2.4), one obtains 

s $'"'(R, Q) q,,(D)& = ; c$ijjY)(R). (2.12) 
j=O 

Thus, the multidimensional scattering problem (2.1) and (2.10) is reduced to the 
system of (N + 1) differential-difference equations 

where 

(2.13) 
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with the boundary conditions: 

These equations are in a form that is identical to the equations of the rnulticba~~e~ 
scattering problem; and to solve them, it is natural to use the methods elaborated 
on earlier for solving this problem (see, for example. [I]), adopted then for the 
peculiarities of the considered problem. Here, following paper [3], we formulate 
problem (2.13) and (2.14) as the nonlinear functional equation 

v = 0, 1, . . . . S< N; j= 0, 1, ~~., N; m = 1, . . . . 5, 

the root of which is a solution of the scattering problem at a fixed collision energy 
E = E*. The first two components of the operator F (‘: define the system of equations 
(2.13) and the boundary condition for the searched wave functions $ ‘,“(I?) at the 
point R=O: 

F;“‘(z) = $ b,--$+ 2M(e6,- Vxj(R)) lj)“‘(R) 
3 j=O I 

(2.16) 

The third component F, CV’ defines the boundary condition at the point N = R, 
which follows from the asymptotic relations (2.14) (see [3] )* 

where 

: d 

In that form, problem (2.15) represents a system of (N+ I) second-order 
ordinary differential equations with boundary conditions at the points R= Q and 
R= R, for defining (Nt 3) unknown values z= (tic’(R), gT tVL,>. For a unique 
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solvability of the problem it is necessary to supplement it with two more equations. 
For this aim let us use the normalization condition for the wave function 

iI, 1 RmdR dQIC/‘(R, Q)- 1=0 

and the relation 

s, 1 RmdR dQt&R,B){H(R,Q)-&*}t+b(R,Qj=O 

fixing the collision energy E = E* (see [-?I). From expansion (2.6) for $(R, Q) the 
expression follows for components Fj”’ and FiVi of the operator P’ 

Here g, is a weight function resulting from the integration over Q determined by 
quandrature formulas used and properties of the basis functions qp,(Q). 

Upon solving the system of Eq. (2.15)-(2.20), one obtains the wave function of 
the multichannel scattering problem (2.1) and (2.10) 

$“‘(R, 52) = ; $ cp,(Q) cp;’ $j”(R) 
j=o a=0 

at E = F* and diagonal elements of the reaction matrix t,,(s*). 
Nondiagonal matrix elements t,, (v # a) are determined by the formula 

(2.21) 

Once the reaction matrix T(E) = {t,,,} is known, it is possible to determine the 
S-matrix of the problem and the corresponding cross section by the known 
formulas [6]. 

In Appendix A the solution of problem (2.15)-(2.20) is represented as a sequence 
of the boundary-value problems for iteration corrections to the searched wave func- 
tion (@c)(R)}. It is also interesting to consider other representations for the 
solution of problem (2.15)-(2.20). 

Note, that transition from the multidimensional scattering problem to Eq. (2.15) 
is particularly transparent and it is easily carried out for splitting (2.2) of the initial 
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Hamiltonian H(R, 52). However, the suggested approach does not require the coia- 
cidence of H,(Q) with the Hamiltonian of the target, which is demonstrated in the 
next section using the scattering problem on a nonspherical scatterer as an exampie. 
This probem, on the one hand, already reflects peculiarities of the mu~tid~rne~sio~a~ 
scattering problem, and on the other hand, it is quite simple to illustrate rhe 
peculiarities of the suggested approach. 

For some problems, a more convenient splitting may be introduced as 

H(R,G?)= -&-$+V(R,Q)+H,(Q;R) 
,’ 

provided that eigenvalues E,(R) and eigenfunctions (p,(Q; R) of the ~arn~~to~~a~ 
EI,(R; Q) depending on R as a parameter are easily calculated. 

3. SCATTERING ON NONSPHERICAL SCATTERER 

Let us now apply the suggested approach to the scattering problem of a particle 
with mass A4 on a nonspherical scatterer P’(R). For simplicity we consider the 
axial-symmetric case V(R) = V(R, cos l?), where B is the angle between axis z and 
the scattering direction. To this end we formulate problem (3.15) for that case. 

The Schrgdinger equation has the form 

where RE[O, ~),.x=cosO~[-1, 11. 
We write the asymptotics of its solution as R -+ x8 in the reaction-m&x 

representation 

where P&j are Legendre polynomials with the orthogonality conditions on the 
segment [--I, I] [Yr P,(x) P,(x)dx=(2/(2a+ I))&,,.. 

A next step is to determine the matrix T= (ryUL), in terms of which it is possibie 
to express the scattering amplitude 

2@=1-(l+iT)(l-i?--‘, ,I” (fv3) 
h3.3 j 

The cross section at the scattering angle Ok (nk and nR are unit vectors coinciding 
with directions k and R, respectively) equals 
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and the total cross section averaged over possible orientations of the scatterer is 

1 ’ c=- s 2 -1 0(xX-) dx,. (3.5) 

It is easy to see that in the case of spherical potential matrices 1 and T are 
diagonal. 

Let us introduce the net xi (i = 0, 1, . . . . N) for the variable x and represent the 
solution of Eq. (3.1) analogously to (2.6) as 

(3.6) 

(here P, = P,(xi)). 
In this case at mesh points xa, formulas (2.7) and (2.8) for (Hoe), and (V’$), are 

simplified to’: 

Using (3.2) and (3.7) and orthogonality relations for the Legendre polynomials, we 
obtain the system of (N-t 1) equations of form (2.15)-(2.20) with components FL:” 
determined by the equations 

h 

F;“‘(z) = c 
j=O 

a,-$+ 2M(kbuj- Vaj(Rj) 

where 

V.,(R)=& ,f Z(Z+ 1) P,,PF’ + V(R. x,j 6, 
I=0 

I:” = tin(O); M = 0, 1, ,.., N, (3.9) 

(3.10) 

’ For calculating the inverse matrix P,/-’ it is possible to use the relations x;L, ((2/+ 1)/2) P,(.x,) 
P,(x,) z l,!h 6, which approximate the completeness relations z’;;=, ((21+ 1)/2) P,(s,) P,(q) = 
6(x,-x,). In this case PC ’ 2 Pl(x,) /2((2/+ 1)/Z). This formula can be made more accurate if we take 
x, as points of N-points Gaussian quadrature and introduce corresponding weights CL), instead of 
h = constant. Then Pi:’ 3 CIJ, ‘,‘Pl(xj) 0?((2/+ 1)/2), and using formulas (3.7) we obtain Eq. (3.1) in the 
“discrete variable representation” considered in [Z]. 
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where 

where g, are the weights of the quadrature formulas of integration over the 
variable .Y (see the determination of equations (2.19) and (2.20)). 

Nondiagonal matrix elements t,., are determined by the formula 

t h+ 1 (j,,(kR,,,)+ t,.,,tz,,(kR,)) CFL=, P;‘cl/)“!(R,) = 
i 

-. 
ra 2cr + 1 n,(kRJ . -y;“r;, p,;~lq(.rz,)’ 

(3.131 
’ ‘\ 

As the right-hand side of formula (3.6) is an interpolating polynomial of degree 
N in the variable X, the accuracy of expansion (3.6), S$ W = I$ -- $1~1 i can be 
estimated as follows [ 151: 

Then, it may be shown that the matrix elements t,, are also accurate to an order 
- l/1 (N f 1 j i when Eqs, (3.8 j-(3.13) are solved exactly. This provides a rapid 
convergence of the method with respect to N when highly, accurate quadrature 
formulas are used in (3.11) and (3.12). 

4. NUMERICAL EXAMPLE 

As an example of using the suggested approach, we have solved scattering 
problems for a nonspherical potential well 

and for a long-range nonspherical scatterer, 

V(R, x) = c’ 

1 

N 
---23 R 

R> R,. 
(4.2) 
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A potential of type (4.2) has been used, for example, in consideration of the scat- 
tering of electrons by polar molecules and hydrogen atoms in excited states [16] 
(“dipole scattering”). For the solution of problem (3.8)-(3.13) the algorithm [3] 
had been used (see formulas (A.l)-(A.6) of Appendix A) with the finite-difference 
approximation in variable R of the order -hi [ 131. Calculations have been made 
at M= 1, V,= -0.5, R,= 1. 

Results of the calculation of matrix elements t,,X for the nonspherical potential 
well (4.1) are presented in Table I at y = 1 as functions of N (N+ 1 is a number of 
mesh points in x). 

The quantities 

&W) = r,w(N) - LCW 
LCW- ~(4Nl 

(4.3) 

which characterize the convergence of the method in N are also presented in 
Table I. In the last column of Table I phase shifts t,,, for the spherical well (17 = 0) 
(in this case t,, = 0 at v # a) are given, which differ from the exact solution by an 
order of - 10-3-10-4. The calculations have been made at h, = 0.0125, R, = 5 for 
the collision energy E = 0.005 (k = 0.1). 

In Table II we report results of calculations of the matrix elements t,, and quan- 
tities 6,,(N) (4.3) for the “dipole” interaction potential (4.2). The calculations have 
been made at h, = 0.1, R, = 20 at the collision energy E = 0.02 (k = 0.2). 

In calculations, weight functions of the Simpson formulas have been used in 
(3.11) and (3.12). As mentioned in Section 3, the convergence of the method in this 

TABLE I 

Matrix Elements t, and Quantities 6,(N) for Nonspherical Potential Well (4.1) 

y = 1 y = 0 

t "l 

N 
\ 

a 
0 I 2 3 6.0) f,. 

” 
\ 

2 0 

4 

8 
2 1 
4 

8 

2 2 
3 

8 
2 3 
4 

6 

0.6460 1 x lo-‘0 -0.6714 x lo-’ 

0.3817 1x10-‘0 -0.4004 x 10-X 

0.3812 1 x lo-‘0 -0.3706 x 10 -’ 

1 x lo-‘0 0.1191 x lo-* 1 x lo-‘) 

1 x 10-10 0.5131 x lo-’ 1 x lo-” 

1 x lo-‘0 0.4034x 10-j 1 x lo-‘? 

-0.1678 x lo-* 1 x lo-‘2 0.1986 x IO-’ 

-0.5106 x lo-” 1X10-” 0.8722 x 10m6 

-0.3712 x IO-’ 1 x 10-12 0.5922 x 10-b 

1 x 10-14 
1 x 10-1’ 

-0.5437 x 10-a 1 x10-1” 
-0.2290 x 1O-6 1 x 10-13 

1 x 10-I” 529 0.5699 x lo-~’ 
1 x lo-‘J 

-0.2663 x 10m6 6.2 0.25 x 10-a 

- 0.2055 x 10-G 

1 x 10-15 4.0 0.6 x 1O-6 

1 x 10 -‘a 

--0.34x 10-q 
-0.21 x 10 m9 
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TABLE II 

Matrix Elements t,, and Quantities 6,,(N) for “Dipole” Scatterer (4.2) 

is 
\ 

c 
0 1 2 3 4 

i' 
6..(2) 

\ \ 

2 0 0.3847 0.5916 -0.4902x 10-l 
4 0.3095 0.5138 -0.4583 x 10-l 0.6203 x lo-’ -0.3290x IO-’ 376 
a 0.3093 0.5134 --0.4581 x 10-l 0.6!63 x 10-l -0.3281 x IO-’ 

2 1 0.5916 -0.4253 x 1O-3 0.2466 
4 0.5137 -0.1259 0.2474 mm0.1584xiO-' 0.7693x lo,3 209 
& 0.5134 -0.1265 0.2474 --0.1575x 10-l 0.7677~10~' 

2 2 -0.1226 0.6164 -0.2522x 10-l 
4 -0.4636x 10-l 0.2493 0.9181 x lo-’ 0.9243 x 10-l 0.3617 x 10-l 
8 -~0.4581 x 10-l 0.2474 0.9150~10-~ 0.921OxLO-' 0.3611x10-~ 

2 3 
4 0.7029 x LO-' -0.2356 x lo-’ 0.9200 x 10-l 0.8515 x IO-* 0.2174 x 10-l 
8 0.6163 x 10-l -0.1575 x 1O-2 0.9210 x 10-l 0.6897 x 1O-2 0.2171 x i LO- 

2 4 
a -0.3917 x 10m2 0.4148 x lo-’ -0.1025 x 10-I 0.3340 x 10-l 0.1134 x lo-’ 
8 -0.3278 x lo--’ 0.7670x lo-’ -0.3608 x 1O-2 0.2171 x 10-I 0.8816 x 10-m? 

1V~fe: Matrix elements t,, at v, a> 4 have the order Iess than 10m5. 

case should be better than - 1/N4; this means that for all N > 77, where R is fixed 
by the problem peculiarities, the inequality 6,(N) 2 6,, theor = 16 must hold, which 
is shown in Tables I and II. 

Here we do not consider the well-known question on convergence of the met 
as h,+O and R, -+ co and convergence of the “Newton iterations” (Al)-bA.4) 
which were tested in [3, 1 l-131. Note only that the convergence up to the quantity 
3‘ = jlF(z*)ll - 10e6 has been achieved after live or six iterations for potential (4.1) 
and after four or five iterations for potential (4.2). The accuracy of the calculations 
can also be controlled by the accuracy of the relations r,, = f,,, (o! # 1’) (see Tables I 
and II where the above relations are fulfilled with a relative accuracy - 10PJ at 
N= 8). 

Note here that a good convergence of the method for both considered examples 
is found for N= 2: 6,, num(N) 2 S,, theor. 

5. DISCRETE SPECTRUM OF MULTIDIMENSIONAL SCIIR~XNGER EQWATKW 

The proposed approach is used for solving the multidimensional Schrodinger 
equation both for continuous and discrete spectra. In the latter case. the 
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problem (2.15)-(2.20) becomes simpler. And the system of equations F’“‘(z) = 0 is 
replaced by one equation F(‘)(r) =O, where z= ($“‘(R, Q), E}, and the com- 
ponents of the operator Fz) are determined by formulas (2.16)-(2.19) in which 
gF’= 0 and $“,“‘= 1 for S= 0 (in this case all channels are closed: E-E, < 0; 
cx = 0, 1, . ..) N). For its solution, as before, formulas (A.l )-(A.6) of Appendix A with 
the natural condition & = 0 [3] are applicable. 

To demonstrate the possibilities of the method for the discrete spectrum of the 
Schrodinger equation, it was applied to the well-known problem of a hydrogen 
atom in a homogeneous magnetic field. 

In that case potential V(R, xj in (3.1) equals 

V(R,.x)= -z+T’ 1 R2Y2 (lBx-2). (5.1) 

Here ?/ is a parameter of the magnetic field intensity (see, for example, [17]). 
In Table III calculated energies of the ground state of the hydrogen atom at 

N=2, 4, 8, 16; h, =0.0125, R, = 10 are compared for several parameters of the 
magnetic field 7 with the results of papers [ 17, 181, where an accuracy of an order 
of - 10d4- lo-’ has been achieved. 

Here the quantities 6(N) = (E(N) - ~(2N))/(s(2N) - s(4N)) which characterize the 
convergence of the method in N are also presented. Note that for discrete spectra 
of the Schriidinger equation the convergence of the method in the given variant is 
more rapid than for the scattering problem, and for N > N (here m depends on the 
quantity y) the convergence is determined only by the accuracy of decomposition 
(3.6) - l/(N + 1) !, since in this case numerical integration is performed only for 
the normalization of the wave function in (3.11). Thus, even for strong field 
y = 1,6 num(N) z S theor 2: (2N)!/N! = 12 for N= 2. 

TABLE III 

Energy of the Ground State of the Hydrogen Atom in a Homogeneous Magnetic Field 
--E (in the Units .zO = RJ) 

Y N=2 N=4 N=8 N= 16 1171 60) h(4) 

0.0 0.999960 0.999960 0.999960 0.999957” 
0.1 0.995028 0.995013 0.995013 0.99508 
0.2 0.980923 0.980726 0.980723 0.98076 65.7 
0.5 0.898721 0.894583 0.894380 0.894378 0.89447 20.4 101.5 
1.0 0.694082 0.665045 0.662361 0.662291 0.66241 10.8 38.3 

(0.66228”) 

n The results from paper [IS]. 
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6. CONCLUSION 

The method proposed in this paper can be generalized to three-dimensional and 
multidimensional cases. It is rather effective; the most labour-consuming part of the 
known methods of solution of the multidimensional Schrbdinger equation, the 
calculation of matrix elements, is replaced here by a simple algorithm of generation 
of the coefficient matrix for a system of differential-difference equation. An attrac- 
tive aspect of the approach is its rapid convergence. In the suggested approach the 
accuracy of expansion (2.6) for the searched wave function is known a priori. For 
the considered example, (3.6), it equals - l/(l\i+ I)!, which provides a ra 
vergence of the method when using formulas of a high accuracy for the numerical, 
differentiation and integration of the basis functions cp,(Q) over 51 in deriving equa- 
tions (2.8) (2.19), and (2.20). Note that for simplicity here we only use hi= const 
and optimization by this parameter was not considered. But the suggested 
approach admits also the use of h,#const according to some possibly mere 
efficiently weighted integration scheme. 

The above two circumstances, in our opinion, make the method attractive for 
solving essentially multidimensional Schrbdinger equations fsr both continuous and 
discrete spectra. One of the most interesting problems of that sort is the scattering 
on a nonrigid rotator, which corresponds to the scattering of a neutral particle on 
a di-atomic molecule with excitation of the rotational and vibrational degrees of 
freedom; also we may indicate such problems as the electron scattering on atoms, 
mesic atomic scattering on nuclei, the hydrogen atom in an inhomogeneous field., 
etc. 

The approach can be generalized to the scattering of a structural complex on a 
structural target. These problems will be considered elsewhere. 

APPENDIX A 

Following paper [3] we represent the solution of problem (2.1s )-(2.X) as the 
iteration procedure 

where 

v(n) = qpJ + pL”u(ffl + $1 . O(nl 
1 2 

z* = {lp’, &*, fi,;‘), yr’“‘= {l@‘(R)), V@)= {v;n’(R)j, 

Cs;l-, is a Frechet derivative at the point z .), which at every iteration step T?, consists 
in the solution of boundary-value problems for determination of iteration correc- 
tions u(“) and o(“): 
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d” 
- U(‘i’ + 2M(&,, - p) “(‘I’ = -#“’ 
dR2 

d”)(,=,=O (A.3) 

In the solution of the system of algebraic equations to search & and pz 

(A.41 

here, the notation was introduced: 

a71 = (yfcnJ, Utn)), ay2 = \v’“J, mcnJ) ( 

d2 a’;, = (\v(“), 7 Utn) 
dR’ 

+ 2M(&* - P) d”‘) + (u’“‘, AC- 
dR2 ’ 

rn’ + 2&q&* - P) y’“‘) 

a& = @‘, s ( d2 co(“) + 2M(&* - rq c!P)) + (u, (‘4) L!$ pI + &qE* - p) @‘) 

C-4.5) 
b” = 1 [ 1 + (,#“’ 

l 2 
7 #“‘)] 

b; = (wilz), A.!& $4 + 2M(&* - P) \v’“‘), 

where 

p= {K,(R)), (w, w) = c g, j,R” tie(R) $,(R) dR 
ui 

v ” -I= {qc?), 4, = (9~‘(t!,f’, R) S,,.}. 

It is convenient to use as an initial approximation zO = {\v’O’, Ed, rkt’) for the 
solution of problem (2.13)-(2.14) when interaction between a scatterer and a target 
is absent (V(R, Q) + J(J+ 1)/2MR2). 

v (O)= {$;“‘W} = {j,(kR) d,,), EC, = &*, tI,Y’ = 0. (A.61 



MULTIDIMENSIONAL SCATTERING PROBLEM 3’ : 

Formulae (Al)-(AS) represent a continuous analog of rhe Newton solution 
of Eq. (2.15)-(2.20) (if T,! = 1, the formulae represent the classical Kewton- 
Kantorovich method) [7, S]. 

Convergence of the procedure in that type of problem has been tested theoreti- 
cally [ 101 and numerically [ 1 l-131. 

Note that in transformation of the Schrbdinger equation (21) into system (2.13 ) 
it is important to keep the problem Hermitian, i.e., to symmetrize the matrix of 
potentials Y,j(R)I if necessary. For matrix of type (2.13 j it is a standard problem 
114-j. 
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